OXIDATION NUMBERS

Used to

- · tell if oxidation or reduction has taken place
- · work out what has been oxidised and/or reduced
- · construct half equations and balance redox equations

Atoms and simple ions

'The number of electrons which must be added or removed to become neutral'

atoms Na in Na = 0 neutral already ... no need to add any electrons

cations Na in Na⁺ = +1 need to add 1 electron to make Na⁺ neutral

anions Cl in $Cl^- = -1$ need to take 1 electron away to make Cl^- neutral

Q.1 What is the oxidation state of the elements in?

a) N

b) Fe3+

c) S^2

d) Cu

e) Cu²⁺

f) Cu⁺

Molecules

'The sum of the oxidation numbers adds up to zero'

Elements $H \text{ in } H_2 = 0$

Compounds C in $CO_2 = +4$ and O = -2 +4 and 2(-2) = 0

- CO₂ is neutral, so the sum of the oxidation numbers must be zero
- one element must have a positive ON, the other must be negative
- · the more electronegative species will have the negative value
- · electronegativity increases across a period and decreases down a group
- O is further to the right in the periodic table so it has the negative value (-2)
- C is to the left so it has the positive value (+4)
- one needs two O's at -2 each to balance one C at +4

Q.2 If the oxidation number of O is -2, state the oxidation number of the other element in...

- a) SO_2
- b) SO_3
- (c) NO
- d) NO_2

- e) N_2O
- f) MnO_2
- g) P_4O_{10}
- h) Cl_2O_7

Complex ions

'The sum of the oxidation numbers adds up to the charge on the ion'

in SO_4^{2-} S = +6, O = -2 [i.e. +6 + 4(-2) = -2] the ion has a 2- charge

Example

What is the oxidation number (O.N.) of Mn in MnO_4 ?

- the O.N. of oxygen in most compounds is -2
- there are 4 O's so the sum of the O.N.'s = -8
- the overall charge on the ion is -1, : sum of all the O.N.'s must add up to -1
- the O.S. of Mn plus the sum of the O.N.'s of the four O's must equal -1
- therefore the O.N. of Manganese in MnO_4 = +7

WHICH OXIDATION NUMBER?

- · elements can exist in more than one oxidation state
- · certain elements can be used as benchmarks

HYDROGEN (+1)	except	0 -1	atom (H) and molecule (H ₂) hydride ion, H ⁻ [in sodium hydride, NaH]
OXYGEN (-2)	except	0 -1 +2	atom (O) and molecule (O_2) in hydrogen peroxide, H_2O_2 in F_2O
FLUORINE (-1)	except	0	atom (F) and molecule (F ₂)

Metals

- · have positive values in compounds
- value is usually that of the Group Number

Alis+3

values can go no higher than the Group No.

Mn can be +2,+4,+6,+7

Non metals • mostly negative based on their usual ion

Cl is usually -1

• can have values up to their Group No.

Cl can be +1, +3, +5, +7

- to avoid ambiguity, the oxidation number is often included in the name
 - manganese(IV) oxide shows Mn is in the +4 oxidation state in MnO₂ e.g. sulphur(VI) oxide for SO₃ dichromate(VI) for Cr₂O₇²phosphorus(V) chloride for PCI5.

Q.3 What is the theoretical maximum oxidation state of the following elements?

Na

P

Ва

Pb

S

Mn

Cr

State the most common and the maximum oxidation number in compounds of...

Li

Br

Sr

0

В

N

COMMON

MAXIMUM

0.4 Give the oxidation number of the element other than O, H or F in

 SO_2

 NH_3

 NO_2

 NH_4^+

 IF_7

 NO_2^-

 Cl_2O_7

 SO_3^{2-}

 MnO_4^{2-} $S_2O_3^{2-}$

 $NO_3^ S_4O_6^{2-}$

What is odd about the value of the oxidation state of S in $S_4O_6^{2-}$?

Can it have such a value? Can you provide a suitable explanation?

Q.5What is the oxidation number of each element in the following compounds?

> CH_4 C =

 PCl_3

P =

 NCl_3

N =

H =

Cl =

Cl =

 CS_2

 $MgCl_2$

C =S =

 ICl_5

I =

Cl =

 BrF_3

Br =F =

Mg =

 H_3PO_4

H =

NH₄Cl

N =

Cl =

P =

H =

0=

Cl =

 H_2SO_4

H =

 $MgCO_3$

Mg =

 $SOCl_2$

s =

S =

C =

0=

o =

0 =

Cl =

REDOX REACTIONS

Redox

When reduction and oxidation take place

Oxidation

Removal of electrons; species get less negative / more positive

Reduction Gain of electrons; species becomes more negative / less positive

REDUCTION in O.N. Species has been REDUCED

e.g. Cl is reduced to Cl (0 to -1)

INCREASE in O.N.

Species has been OXIDISED

e.g. Na is oxidised to Na⁺ (0 to +1)

OIL RIG

Oxidation Is the Loss

Reduction Is the Gain of electrons

0.6 Classify the following (unbalanced) changes as oxidation, reduction or neither.

a)
$$Mg \longrightarrow Mg^{2+}$$

b)
$$O^{2-} \longrightarrow O$$

c)
$$Al^{3+}$$
 \longrightarrow Al

d)
$$Fe^{3+} - Fe^{2+}$$

$$e)$$
 Ti^{3+} \longrightarrow Ti^{4+}

$$f)$$
 $2Q$ \longrightarrow Q_2

Q.7 What change takes place in the oxidation state of the underlined element? Classify the change as oxidation (O), reduction (R) or neither (N).

a)
$$NO_3$$
 NO

b)
$$H\underline{N}O_3 \longrightarrow N_2O$$

d)
$$Cr_2O_7^{2-} \longrightarrow Cr^{3+}$$

e)
$$SO_3^{2-}$$
 ---> SO_4^{2-}

$$f) Cr_2O_7^{2-} \longrightarrow CrO_4^{2-}$$

g)
$$H_2 \underline{O}_2 \longrightarrow H_2 O$$

h)
$$H_2\underline{\mathbf{O}}_2 \longrightarrow O_2$$

How to balance redox half equations

Step

- 1 Work out the formula of the species before and after the change;
- 2 If different numbers of the relevant species are on both sides, balance them
- 3 Work out the oxidation number of the element before and after the change
- 4 Add electrons to one side of the equation so the oxidation numbers balance
- 5 If the charges on all the species (ions and electrons) on either side of the equation do not balance, add H⁺ ions to one side to balance the charges
- 6 If the equation still doesn't balance, add sufficient water molecules to one side

Example 1 Iron(II) being oxidised to iron(III).

Steps1/2

$$Fe^{2+}$$
 Fe^{3+}

 Step 3
 $+2$
 $+3$

 Step 4
 Fe^{2+}
 Fe^{3+}
 $+e^{-}$

now balanced

Example 2 MnO₄ being reduced to Mn²⁺ in acidic solution

Steps 1/2

$$MnO_4^-$$
 ----->
 Mn^{2+}

 Step 3
 +7
 +2

 Step 4
 MnO_4^- + $5e^-$ ------->
 Mn^{2+}

 Step 5
 MnO_4^- + $5e^-$ + $8H^+$ ----->
 Mn^{2+}

 Step 6
 MnO_4^- + $5e^-$ + $8H^+$ ---->
 Mn^{2+} + $4H_2O$ now balanced

$$I_{2}$$
 -> I^{-}
 $C_{2}O_{4}^{2-}$ -> $2CO_{2}$
 $H_{2}O_{2}$ -> O_{2}
 $H_{2}O_{2}$ -> $H_{2}O$
 $Cr_{2}O_{7}^{2-}$ -> Cr^{3+}
 SO_{4}^{2-} -> SO_{2}

Combining half equations

A combination of two ionic half equations, one involving oxidation and the other reduction, produces a balanced REDOX equation. The equations can be balanced as follows...

Step 1 Write out the two half equations

- 2 Multiply the equations so that the number of electrons in each is the same
- 3 Add the equations and cancel out the electrons on either side of the equation
- 4 If necessary, cancel out any other species which appear on both sides

Example The reaction between manganate(VII) and iron(II).

Step 1
$$Fe^{2+}$$
 —> Fe^{3+} + e^{-} Oxidation MnO_4^{-} + $5e^{-}$ + $8H^+$ —> Mn^{2+} + $4H_2O$ Reduction

Step 2

$$5Fe^{2+}$$
 — > $5Fe^{3+}$ + $5e^{-}$
 multiplied by 5

 MnO_4^- + $5e^-$ + $8H^+$ — > Mn^{2+} + $4H_2O$
 multiplied by 1

Step 3
$$MnO_4^- + 5e^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+} + 5e^-$$

 $MnO_4^- + 5e^- + 8H^+ + 5Fe^{2+} \longrightarrow Mn^{2+} + 4H_2O + 5Fe^{3+} + 5e^-$

gives
$$MnO_4^- + 8H^+ + 5Fe^{2+} - Mn^{2+} + 4H_2O + 5Fe^{3+}$$

Q.9 Construct balanced redox equations for the reactions between

- a) Mg and H⁺
- b) $Cr_2O_7^{2-}$ and Fe^{2+}
- c) H_2O_2 and MnO_4
- d) $C_2O_4^{2-}$ and MnO_4^-
- e) $S_2O_3^{2-}$ and I_2
- f) $Cr_2O_7^{2-}$ and I^-